
Problem report - pgSchema

pgDatabase

(declarations of pgDatabase)

23 Object variable declared As New: cnDatabase

pgDatabase.KillTypeCache

 Dead procedure

pgDatabase.LookupType

 Dead procedure
 4 Object variable declared As New: rs

pgDatabase.KillLanguageCache

 Dead procedure

pgDatabase.LookupLanguage

 Dead procedure
 4 Object variable declared As New: rs

pgDatabase.KillOperatorCache

 Dead procedure

pgDatabase.LookupOperator

 Dead procedure
 4 Object variable declared As New: rs

pgDatabase.LookupComment

 5 Object variable declared As New: rs

pgDatabase.Comment [Get]

 5 Consider short circuit with nested Ifs

pgDatabase.Vacuum

13 Consider short circuit with nested Ifs

pgDatabase.DatabaseVarList [Get]

 Dead procedure

pgDatabase.Grant

 8 Object variable declared As New: rs

pgDatabase.Revoke

 8 Object variable declared As New: rs

Databases

Databases.iAdd

 Function without type specification

Databases.Add

 7 Object variable declared As New: rs
 8 Object variable declared As New: rsComment
 9 Dead variable: rsUser
 9 Object variable declared As New: rsUser

Databases.Initialize

 6 Dead variable: szSQL
 7 Object variable declared As New: rs

basGlobal

(declarations of basGlobal)

18 Dead constant: ODBC_CONNECT_OPTIONS
24 Dead constant: SQL_GET_USERS
25 Dead constant: SQL_GET_GROUPS
26 Dead constant: SQL_GET_SEQUENCES
27 Dead constant: SQL_GET_VIEWS7_1
28 Dead constant: SQL_GET_VIEWS7_3
29 Dead constant: SQL_GET_TYPES7_1
30 Dead constant: SQL_GET_TYPES7_3
31 Dead constant: SQL_GET_DOMAINS
32 Dead constant: SQL_GET_FUNCTIONS7_1
33 Dead constant: SQL_GET_FUNCTIONS7_3
34 Dead constant: SQL_GET_OPERATORS
35 Dead constant: SQL_GET_RULES7_1
36 Dead constant: SQL_GET_RULES7_3
37 Dead constant: SQL_GET_TRIGGERS
40 Dead constant: SQL_GET_COLUMNS7_1
41 Dead constant: SQL_GET_COLUMNS7_2
42 Dead constant: SQL_GET_COLUMNS7_3
43 Dead constant: SQL_GET_INDEXES
44 Dead constant: SQL_GET_INDEX_COLUMNS
45 Dead constant: SQL_GET_CHECKS7_2
46 Dead constant: SQL_GET_CHECKS7_3
47 Dead constant: SQL_GET_INHERITED_TABLES
48 Dead constant: SQL_GET_AGGREGATES7_1

49 Dead constant: SQL_GET_AGGREGATES7_3
50 Dead constant: SQL_GET_FOREIGN_KEYS
51 Dead constant: SQL_GET_NAMESPACES
52 Dead constant: SQL_GET_CASTS
53 Dead constant: SQL_GET_CONVERSIONS

basGlobal.GetVersionEx

 Dead declaration (called by dead only)

basGlobal.GetModuleFileName

 Dead declaration

basGlobal.fmtID

16 Unicode function is faster: AscW
19 Consider short circuit with nested Ifs

basGlobal.fmtTypeID

 4 Dead variable: iLen
20 Unicode function is faster: AscW
23 Consider short circuit with nested Ifs

basGlobal.ULEncode

11 Unicode function is faster: AscW
11 Unicode function is faster: AscW
11 Consider short circuit with nested Ifs

basGlobal.GetUniqueID

 Dead procedure

basGlobal.WinVer

 Dead procedure

basGlobal.WinBuild

 Dead procedure

basGlobal.WinName

 Dead procedure

basGlobal.WinInfo

 Dead procedure
11 Constant available: vbNullChar

Tables

Tables.iAdd

 7 Dead variable: szSQL
 8 Object variable declared As New: rs

Tables.Add

 7 Object variable declared As New: rs

Tables.Rename

 7 Object variable declared As New: objTable

Tables.Initialize

 6 Object variable declared As New: rs

pgTable

pgTable.Rows [Get]

 7 Object variable declared As New: rs

pgTable.Grant

 8 Object variable declared As New: rs

pgTable.Revoke

 8 Object variable declared As New: rs

pgTable.SQL [Get]

10 Dead variable: objRelationship
44 Consider short circuit with nested Ifs

pgRelationship

pgRelationship.NamespaceOID [Let]

 Dead procedure

pgRelationship.Namespace [Let]

 Dead procedure

pgRelationship.Connection [Set]

 Dead procedure

pgRelationship.Identifier [Let]

 Dead procedure

pgRelationship.LocalColumn [Let]

 Dead procedure

pgRelationship.ReferencedColumn [Let]

 Dead procedure

pgNamespace

pgNamespace.Connection [Set]

 Dead procedure

pgNamespace.Oid [Let]

 Dead procedure

pgNamespace.Name [Let]

 Dead procedure

pgNamespace.Identifier [Let]

 Dead procedure

pgNamespace.SystemObject [Let]

 Dead procedure

pgNamespace.Owner [Let]

 Dead procedure

pgNamespace.ACL [Let]

 Dead procedure

pgNamespace.Grant

 8 Object variable declared As New: rs

pgNamespace.Revoke

 8 Object variable declared As New: rs

DatabaseVars

(declarations of DatabaseVars)

 9 Dead variable: szName
10 Dead variable: szValue

DatabaseVars.iAdd

 2 Parameter without type specification: szValue
 6 Object variable declared As New: objVar

DatabaseVars.Refresh

 6 Dead variable: szSQL
 8 Object variable declared As New: rs

DatabaseVars.Initialize

 6 Dead variable: szDatabaseVars
29 Consider short circuit with nested Ifs

basDepend

basDepend.DepRef

 9 Object variable declared As New: colDep
10 Variable without type specification: objTmp

basDepend.AddObjDepend

 2 Parameter without type specification: ObjFind
 6 Variable without type specification: objTmp

basDepend.GetObjectTypePgClass

 Function without type specification
 8 Variable without type specification: objTmp

Problematic areas

File Problem count
basGlobal 45 ********
pgDatabase 16 ***
pgNamespace 9 **
DatabaseVars 8 *
Databases 7 *
pgRelationship 6 *
basDepend 6 *
pgTable 5 *
Tables 5 *

Problem summary

Problem Type

Count

Consider short-circuited logic
Optim. 7

Constant available
Optim. 1

Dead constant
Optim. 29

Dead procedure/declaration/event
Optim. 26

Dead procedure/declaration/event (called by dead only)
Optim. 1

Dead variable/parameter
Optim. 9

Function without type specification
Optim. 2

Object variable declared As New
Optim. 23

Unicode function is faster
Optim. 4

Variable without type specification
Optim. 5

Type Count
Optimization 107 ********************
Total 107
Problems/logical code line 0.03

Filter: <Default>

Problem descriptions

Consider short-circuited logic
In the expressions (x And y), (x Or y), both operands (x, y) are

evaluated.
Short-circuiting means rewriting this so that when x=False in (x And

y), y is
not evaluated. The same goes for x=True in (x Or y). This saves CPU

cycles,
especially if y is a complex expression. In VB.NET, consider replacing

And with
AndAlso, and Or with OrElse. In VB Classic, consider splitting an If

..And..
condition as two nested Ifs. Short-circuiting If ..Or.. yields more

complex
code, usable case by case. Risks: Short-circuiting changes the logic.

If the
second operand calls a function, this call may not execute. Read VB

help for
differences between And/AndAlso and Or/OrElse. Optimization. Severity:

Info.

Constant available
A constant is available in place of a function call. Use a string

constant
instead of Chr/ChrW. The available string constants and their ASCII

values are:

vbNullChar (0), vbBack (8), vbTab (9), vbLf (10), vbVerticalTab (11),
vbFormFeed (12), vbCr (13), vbCrLf or vbNewline (13 & 10). vbNewline is

faster
than vbCrLf. Successive Chr(13) & Chr(10) should be replaced by

vbNewline, not
vbCr & vbLf. - Instead of a call such as Asc("A"), use a numeric

constant such
as Const ascA = 65. - These rules apply to VB 4-6. In VB.NET the

compiler takes
care of optimizing the use of these functions. Optimization. Severity:

Info.

Dead constant
A variable or constant is not used. You may remove it if you are sure

you won't
need it later. The removal doesn't affect the functionality of your

program.
Optimization. Severity: Warning.

Dead procedure/declaration/event
A procedure, a DLL declaration or an Event declaration is not used by

the
project. It is not called by the code nor executed by any other means.

You may
remove it if you are sure you won't need it later. The removal doesn't

affect
the functionality of your program. - Event declarations are reported

dead only
if they are not raised nor handled. See the problem Event not raised

for events
that would be handled but that don't fired. Optimization. Severity:

Warning.

Dead procedure/declaration/event (called by dead only)
You should remove this procedure along with its callers, provided that

you are
sure you won't need any of the callers later. Optimization. Severity:

Warning.

Dead variable/parameter
A variable or constant is not used. You may remove it if you are sure

you won't
need it later. The removal doesn't affect the functionality of your

program.
Optimization. Severity: Warning.

Function without type specification
A function does not have a defined return data type. By default, the

type is
Variant. Variant needs more memory than other types. Decide what type

you need
and write it to the function declaration. Besides, upgrading to VB.NET

will be
easier if you use explicit data types. Fix recommended before upgrade.
Optimization. Severity: Warning.

Object variable declared As New

In VB Classic, declaring an object variable As New creates an
auto-instantiating variable. Each time you read the contents of the

variable,
VB first checks if the variable contains an object, and creates one if

not.
This adds overhead, thus slowing your program down. To achieve better
performance, remove the word New from the declaration, and instantiate

your
variable (Set x = New Class) before it is used. It makes sense to test

with 'If
x Is Nothing Then' before accessing the variable, to avoid the run-time

error
'Object variable not set'. In addition, VB.NET has different semantics

for As
New. Applies to VB 3-6. Optimization. Severity: Warning.

Unicode function is faster
The wide functions AscW and ChrW/ChrW$ are faster than the Asc/Chr/Chr$
alternatives. VB works internally in Unicode, so the unicode versions

run
faster. They are not the same functions though. If you're handling

ASCII
characters from 0 to 127, you're safe to replace Asc with AscW and Chr

with
ChrW/ChrW$. Applies to VB4 and later. Optimization. Severity: Info.

Variable without type specification
A variable does not have a defined data type. By default, the type is

Variant.
Variant needs more memory than other types. Decide what type you need

and write
it to the variable declaration. Besides, upgrading to VB.NET will be

easier if
you use explicit data types. Fix recommended before upgrade.

Optimization.
Severity: Warning.

Project Analyzer 6.2.04 (18/04/2003) pgSchema v1.5.35

